Multi-Agent Learning in Conflicting Multi-level Games with Incomplete Information

نویسندگان

  • Maarten Peeters
  • Katja Verbeeck
  • Ann Nowé
چکیده

Coordination to some equilibrium point is an interesting problem in multi-agent reinforcement learning. In common interest single stage settings this problem has been studied profoundly and efficient solution techniques have been found. Also for particular multi-stage games some experiments show good results. However, for a large scale of problems the agents do not share a common pay-off function. Again, for single stage problems, a solution technique exists that finds a fair solution for all agents. In this paper we report on a technique that is based on learning automata theory and periodical policies. Letting pseudo-independent agents play periodical policies enables them to behave socially in pure conflicting multi-stage games as defined by E. Billard (Billard & Lakshmivarahan 1999; Zhou, Billard, & Lakshmivarahan 1999). We experimented with this technique on games where simple learning automata have the tendency not to cooperate or to show oscillating behavior resulting in a suboptimal pay-off. Simulation results illustrate that our technique overcomes these problems and our agents find a fair solution for both agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Markov Games of Incomplete Information for Multi-Agent Reinforcement Learning

Partially observable stochastic games (POSGs) are an attractive model for many multi-agent domains, but are computationally extremely difficult to solve. We present a new model, Markov games of incomplete information (MGII) which imposes a mild restriction on POSGs while overcoming their primary computational bottleneck. Finally we show how to convert a MGII into a continuous but bounded fully ...

متن کامل

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

Multiagent Reinforcement Learning in Stochastic Games

We adopt stochastic games as a general framework for dynamic noncooperative systems. This framework provides a way of describing the dynamic interactions of agents in terms of individuals' Markov decision processes. By studying this framework, we go beyond the common practice in the study of learning in games, which primarily focus on repeated games or extensive-form games. For stochastic games...

متن کامل

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004